Name:
Hour: \qquad Date:

Chemistry: Ionization Energies

Directions: Below is a table of the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ ionization energies for the first 20 elements. On the graph, plot the $1^{\text {st }}$ ionization energy vs. atomic number. (The atomic number should be along the x-axis.) Then, on the same graph, plot the $2^{\text {nd }}$ ionization energy vs. atomic number, and similarly for the third ionization energy. Use all of the elements of a good graph. After completing your graph, answer the questions at the bottom of this page.

Atomic Number	Chemical Symbol	$\begin{gathered} 1^{\text {st }} \text { Ionization } \\ \text { Energy }(\mathrm{kJ} / \mathrm{mol} \\ \left.\mathbf{x ~ 1 0 ^ { - 3 }}\right) \\ \hline \end{gathered}$	$2^{\text {nd }}$ Ionization Energy (kJ/mol $\times 10^{-3}$)	$3^{\text {rd }}$ Ionization Energy (kJ/mol $\times 10^{-3}$)
1	H	1.3	----	----
2	He	2.4	5.2	---
3	Li	0.5	7.3	11.8
4	Be	0.9	1.8	14.8
5	B	0.8	2.4	3.7
6	C	1.1	2.4	4.6
7	N	1.4	2.9	4.6
8	O	1.3	3.4	5.3
9	F	1.7	3.4	6.0
10	Ne	2.1	4.0	6.3
11	Na	0.5	4.6	6.9
12	Mg	0.7	1.5	7.7
13	AI	0.6	1.8	2.7
14	Si	0.8	1.6	3.2
15	P	1.0	1.9	2.9
16	S	1.0	2.3	3.4
17	Cl	1.3	2.3	3.9
18	Ar	1.5	2.7	3.9
19	K	0.4	3.1	4.6
20	Ca	0.6	1.1	4.9

1. In general, what happens to the $1^{\text {st }}$ ionization energy as you go across a period?
2. In general, what happens to the $1^{\text {st }}$ ionization energy as you go down a group / family?
3. List the elements for which the $2^{\text {nd }}$ ionization energy is significantly higher than the $1^{\text {st }}$ (say, more than four times higher).
4. Explain why the elements you listed in your answer to question three have such large $2^{\text {nd }}$ ionization energies.
5. List the elements for which the $3^{\text {rd }}$ ionization energy is significantly higher than the $2^{\text {nd }}$ (say, more than four times higher).
6. Explain why the elements you listed in your answer to question five have such large $3^{\text {rd }}$ ionization energies.

